Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nutrients ; 14(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057464

RESUMO

In the last two years, there has been a surge in the number of publications on the trace element selenium (Se) and selenocysteine-containing selenoproteins in human health, largely due to the pandemic and the multiple roles that this micronutrient and Se-dependent selenoproteins play in various aspects of the disease [...].


Assuntos
COVID-19/sangue , COVID-19/complicações , SARS-CoV-2 , Selênio/deficiência , Selenoproteína P/sangue , COVID-19/etiologia , COVID-19/mortalidade , Humanos , Estado Nutricional , Selenocisteína/sangue , Selenocisteína/deficiência , Selenoproteínas/sangue , Selenoproteínas/deficiência , Síndrome Pós-COVID-19 Aguda
2.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884733

RESUMO

Selenium, a trace element fundamental to human health, is incorporated as the amino acid selenocysteine (Sec) into more than 25 proteins, referred to as selenoproteins. Human mutations in SECISBP2, SEPSECS and TRU-TCA1-1, three genes essential in the selenocysteine incorporation pathway, affect the expression of most if not all selenoproteins. Systemic selenoprotein deficiency results in a complex, multifactorial disorder, reflecting loss of selenoprotein function in specific tissues and/or long-term impaired selenoenzyme-mediated defence against oxidative and endoplasmic reticulum stress. SEPSECS mutations are associated with a predominantly neurological phenotype with progressive cerebello-cerebral atrophy. Selenoprotein deficiency due to SECISBP2 and TRU-TCA1-1 defects are characterized by abnormal circulating thyroid hormones due to lack of Sec-containing deiodinases, low serum selenium levels (low SELENOP, GPX3), with additional features (myopathy due to low SELENON; photosensitivity, hearing loss, increased adipose mass and function due to reduced antioxidant and endoplasmic reticulum stress defence) in SECISBP2 cases. Antioxidant therapy ameliorates oxidative damage in cells and tissues of patients, but its longer term benefits remain undefined. Ongoing surveillance of patients enables ascertainment of additional phenotypes which may provide further insights into the role of selenoproteins in human biological processes.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , RNA de Transferência Aminoácido-Específico/genética , Proteínas de Ligação a RNA/genética , Selenoproteínas/deficiência , Humanos , Mutação
3.
Redox Biol ; 47: 102154, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601426

RESUMO

Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident protein, is regulated by dietary selenium and expressed at a relatively high level in neurons. SELENOK has been shown to participate in oxidation resistance, calcium (Ca2+) flux regulation, and the ER-associated degradation (ERAD) pathway in immune cells. However, its role in neurons has not been elucidated. Here, we demonstrated that SELENOK gene knockout markedly enhanced ER stress (ERS) and increased apoptosis in neurons. SELENOK gene knockout elicited intracellular Ca2+ flux and activated the m-calpain/caspase-12 cascade, thus inducing neuronal apoptosis both in vivo and in vitro. In addition, SELENOK knockout significantly reduced cognitive ability and increased anxiety in 7-month-old mice. Our findings reveal an unexpected role of SELENOK in regulating ERS-induced neuronal apoptosis.


Assuntos
Calpaína , Estresse do Retículo Endoplasmático , Selenoproteínas , Animais , Apoptose , Calpaína/genética , Retículo Endoplasmático , Camundongos , Selenoproteínas/deficiência , Selenoproteínas/genética
4.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445217

RESUMO

Selenoprotein T (SELENOT, SelT), a thioredoxin-like enzyme, exerts an essential oxidoreductase activity in the endoplasmic reticulum. However, its precise function remains unknown. To gain more understanding of SELENOT function, a conventional global Selenot knockout (KO) mouse model was constructed for the first time using the CRISPR/Cas9 technique. Deletion of SELENOT caused male sterility, reduced size/body weight, lower fed and/or fasting blood glucose levels and lower fasting serum insulin levels, and improved blood lipid profile. Tandem mass tag (TMT) proteomics analysis was conducted to explore the differentially expressed proteins (DEPs) in the liver of male mice, revealing 60 up-regulated and 94 down-regulated DEPs in KO mice. The proteomic results were validated by western blot of three selected DEPs. The elevated expression of Glycogen [starch] synthase, liver (Gys2) is consistent with the hypoglycemic phenotype in KO mice. Furthermore, the bioinformatics analysis showed that Selenot-KO-induced DEPs were mainly related to lipid metabolism, cancer, peroxisome proliferator-activated receptor (PPAR) signaling pathway, complement and coagulation cascades, and protein digestion and absorption. Overall, these findings provide a holistic perspective into SELENOT function and novel insights into the role of SELENOT in glucose and lipid metabolism, and thus, enhance our understanding of SELENOT function.


Assuntos
Regulação da Expressão Gênica , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Proteômica , Selenoproteínas , Animais , Glucose/genética , Hipoglicemia/genética , Hipoglicemia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Selenoproteínas/deficiência , Selenoproteínas/metabolismo , Transdução de Sinais/genética
5.
Reprod Sci ; 28(11): 3200-3211, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34129219

RESUMO

To investigate if differences in imprinting at tropho-microRNA (miRNA) genomic clusters can distinguish between pre-gestational trophoblastic neoplasia cases (pre-GTN) and benign complete hydatidiform mole (CHM) cases at the time of initial uterine evacuation. miRNA sequencing was performed on frozen tissue from 39 CHM cases including 9 GTN cases. DIO3, DLK1, RTL1, and MEG 3 mRNA levels were assessed by qRT-PCR. Protein abundance was assessed by Western blot for DIO3, DLK1, and RTL1. qRT-PCR and Western blot were performed for selenoproteins and markers of oxidative stress. Immunohistochemistry (IHC) was performed for DIO3 on an independent validation set of clinical samples (n = 42) and compared to normal placenta controls across gestational ages. Relative expression of the 14q32 miRNA cluster was lower in pre-GTN cases. There were no differences in protein abundance of DLK1 or RTL1. Notably, there was lower protein expression of DIO3 in pre-GTN cases (5-fold, p < 0.03). There were no differences in mRNA levels of DIO3, DLK1, RTL1 or MEG 3. mRNA levels were higher in all CHM cases compared to normal placenta. IHC showed syncytiotrophoblast-specific DIO3 immunostaining in benign CHM cases and normal placenta, while pre-GTN cases of CHM lacked DIO3 expression. We describe two new biomarkers of pre-GTN CHM cases: decreased 14q32 miRNA expression and loss of DIO3 expression by IHC. Differences in imprinting between benign CHM and pre-GTN cases may provide insight into the fundamental development of CHM.


Assuntos
Progressão da Doença , Regulação Enzimológica da Expressão Gênica/fisiologia , Doença Trofoblástica Gestacional/enzimologia , Mola Hidatiforme/enzimologia , Iodeto Peroxidase/biossíntese , Adolescente , Adulto , Estudos de Coortes , Feminino , Doença Trofoblástica Gestacional/genética , Doença Trofoblástica Gestacional/patologia , Humanos , Mola Hidatiforme/genética , Mola Hidatiforme/patologia , Iodeto Peroxidase/deficiência , Iodeto Peroxidase/genética , Gravidez , Selenoproteínas/biossíntese , Selenoproteínas/deficiência , Selenoproteínas/genética , Adulto Jovem
6.
Mol Metab ; 47: 101170, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33484950

RESUMO

OBJECTIVE: T cell activation triggers metabolic reprogramming to meet increased demands for energy and metabolites required for cellular proliferation. Ethanolamine phospholipid synthesis has emerged as a regulator of metabolic shifts in stem cells and cancer cells, which led us to investigate its potential role during T cell activation. METHODS: As selenoprotein I (SELENOI) is an enzyme participating in two metabolic pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, we generated SELENOI-deficient mouse models to determine loss-of-function effects on metabolic reprogramming during T cell activation. Ex vivo and in vivo assays were carried out along with metabolomic, transcriptomic, and protein analyses to determine the role of SELENOI and the ethanolamine phospholipids synthesized by this enzyme in cell signaling and metabolic pathways that promote T cell activation and proliferation. RESULTS: SELENOI knockout (KO) in mouse T cells led to reduced de novo synthesis of PE and plasmenyl PE during activation and impaired proliferation. SELENOI KO did not affect T cell receptor signaling, but reduced activation of the metabolic sensor AMPK. AMPK was inhibited by high [ATP], consistent with results showing SELENOI KO causing ATP accumulation, along with disrupted metabolic pathways and reduced glycosylphosphatidylinositol (GPI) anchor synthesis/attachment CONCLUSIONS: T cell activation upregulates SELENOI-dependent PE and plasmenyl PE synthesis as a key component of metabolic reprogramming and proliferation.


Assuntos
Etanolamina/metabolismo , Fosfolipídeos/biossíntese , Selenoproteínas/metabolismo , Linfócitos T/metabolismo , Animais , Proliferação de Células , Etanolaminas/metabolismo , Feminino , Glicólise , Glicosilfosfatidilinositóis/metabolismo , Lipogênese/genética , Lipogênese/fisiologia , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos , Camundongos Knockout , Fosfatidiletanolaminas/metabolismo , Selenoproteínas/deficiência , Selenoproteínas/genética
7.
Antioxid Redox Signal ; 33(7): 481-497, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295391

RESUMO

Significance: Generalized selenoprotein deficiency has been associated with mutations in SECISBP2, SEPSECS, and TRU-TCA1-1, 3 factors that are crucial for incorporation of the amino acid selenocysteine (Sec) into at least 25 human selenoproteins. SECISBP2 and TRU-TCA1-1 defects are characterized by a multisystem phenotype due to deficiencies of antioxidant and tissue-specific selenoproteins, together with abnormal thyroid hormone levels reflecting impaired hormone metabolism by deiodinase selenoenzymes. SEPSECS mutations are associated with a predominantly neurological phenotype with progressive cerebello-cerebral atrophy. Recent Advances: The recent identification of individuals with defects in genes encoding components of the selenocysteine insertion pathway has delineated complex and multisystem disorders, reflecting a lack of selenoproteins in specific tissues, oxidative damage due to lack of oxidoreductase-active selenoproteins and other pathways whose nature is unclear. Critical Issues: Abnormal thyroid hormone metabolism in patients can be corrected by triiodothyronine (T3) treatment. No specific therapies for other phenotypes (muscular dystrophy, male infertility, hearing loss, neurodegeneration) exist as yet, but their severity often requires supportive medical intervention. Future Directions: These disorders provide unique insights into the role of selenoproteins in humans. The long-term consequences of reduced cellular antioxidant capacity remain unknown, and future surveillance of patients may reveal time-dependent phenotypes (e.g., neoplasia, aging) or consequences of deficiency of selenoproteins whose function remains to be elucidated. The role of antioxidant therapies requires evaluation. Antioxid. Redox Signal. 33, 481-497.


Assuntos
Suscetibilidade a Doenças , Biossíntese de Proteínas , Selenocisteína/metabolismo , Selenoproteínas/genética , Antioxidantes/metabolismo , Humanos , Família Multigênica , Oxirredução , Estresse Oxidativo , Fenótipo , Selenoproteínas/deficiência , Selenoproteínas/metabolismo , Hormônios Tireóideos/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R981-R996, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32186893

RESUMO

Selenoprotein S (Seps1) can be protective against oxidative, endoplasmic reticulum (ER), and inflammatory stress. Seps1 global knockout mice are less active, possess compromised fast muscle ex vivo strength, and, depending on context, heightened inflammation. Oxidative, ER, and inflammatory stress modulates contractile function; hence, our aim was to investigate the effects of Seps1 gene dose on exercise performance. Seps1-/- knockout, Seps1-/+ heterozygous, and wild-type mice were randomized to 3 days of incremental, high-intensity treadmill running or a sedentary control group. On day 4, the in situ contractile function of fast tibialis anterior (TA) muscles was determined. Seps1 reduction or deletion compromised exercise capacity, decreasing distance run. TA strength was also reduced. In sedentary Seps1-/- knockout mice, TA fatigability was greater than wild-type mice, and this was ameliorated with exercise. Whereas, in Seps1+/- heterozygous mice, exercise compromised TA endurance. These impairments in exercise capacity and TA contractile function were not associated with increased inflammation or a dysregulated redox state. Seps1 is highly expressed in muscle fibers and blood vessels. Interestingly, Nos1 and Vegfa mRNA transcripts were decreased in TA muscles from Seps1-/- knockout and Seps1-/+ heterozygous mice. Impaired exercise performance with Seps1 reduction or deletion cannot be attributed to heightened cellular stress, but it may potentially be mediated, in part, by the effects of Seps1 on the microvasculature.


Assuntos
Citocinas/sangue , Estresse do Retículo Endoplasmático , Tolerância ao Exercício , Mediadores da Inflamação/sangue , Contração Isométrica , Proteínas de Membrana/deficiência , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Selenoproteínas/deficiência , Animais , Citocinas/genética , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação , Fadiga Muscular , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Força Muscular , Músculo Esquelético/patologia , Oxirredução , Estresse Oxidativo/genética , Corrida , Selenoproteínas/genética , Fatores de Tempo
9.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32084277

RESUMO

CONTEXT: Selenocysteine insertion sequence binding protein 2 (SECISBP2, SBP2) is an essential factor for selenoprotein synthesis. Individuals with SBP2 defects have characteristic thyroid function test (TFT) abnormalities resulting from deficiencies in the selenoenzymes deiodinases. Eight families with recessive SBP2 gene mutations have been reported to date. We report 2 families with inherited defect in thyroid hormone metabolism caused by 4 novel compound heterozygous mutations in the SBP2 gene. CASE DESCRIPTIONS: Probands 1 and 2 presented with growth and developmental delay. Both had characteristic TFT with high T4, low T3, high reverse T3, and normal or slightly elevated TSH. The coding region of the SBP2 gene was sequenced and analysis of in vitro translated wild-type and mutant SBP2 proteins was performed. Sequencing of the SBP2 gene identified novel compound heterozygous mutations resulting in mutant SBP2 proteins E679D and R197* in proband 1, and K682Tfs*2 and Q782* in proband 2. In vitro translation of the missense E679D demonstrated all four isoforms, whereas R197* had only 2 shorter isoforms translated from downstream ATGs, and Q782*, K682Tfs*2 expressed isoforms with truncated C-terminus. Reduction in serum glutathione peroxidase enzymatic activity was also demonstrated in both probands. CONCLUSIONS: We report 2 additional families with mutations in the SBP2 gene, a rare inherited condition manifesting global selenoprotein deficiencies. Report of additional families with SBP2 deficiency and their evaluation over time is needed to determine the full spectrum of clinical manifestations in SBP2 deficiency and increase our understanding of the role played by SBP2 and selenoproteins in health and disease.


Assuntos
Proteínas de Ligação a RNA/genética , Selenoproteínas/deficiência , Doenças da Glândula Tireoide/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Testes de Função Tireóidea , Hormônios Tireóideos/sangue , Adulto Jovem
10.
Redox Biol ; 20: 354-366, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391828

RESUMO

Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to human SELENON-related myopathies. SelenoN knockout (KO) mouse limb muscles, however, are protected from the disease, and display no major alterations in muscle histology or contractile properties. Interestingly, we find that the highly active diaphragm muscle shows impaired force production, in line with the human phenotype. In addition, after repeated stimulation with a protocol which induces muscle fatigue, also hind limb muscles show altered relaxation times. Mechanistically, muscle SELENON loss alters activity-dependent calcium handling selectively impinging on the Ca2+ uptake of the sarcoplasmic reticulum and elicits an ER stress response, including the expression of the maladaptive CHOP-induced ERO1. In SELENON-devoid models, ERO1 shifts ER redox to a more oxidised poise, and further affects Ca2+ uptake. Importantly, CHOP ablation in SelenoN KO mice completely prevents diaphragm dysfunction, the prolonged limb muscle relaxation after fatigue, and restores Ca2+ uptake by attenuating the induction of ERO1. These findings suggest that SELENON is part of an ER stress-dependent antioxidant response and that the CHOP/ERO1 branch of the ER stress response is a novel pathogenic mechanism underlying SELENON-related myopathies.


Assuntos
Adaptação Biológica , Estresse do Retículo Endoplasmático , Proteínas Musculares/deficiência , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Selenoproteínas/deficiência , Animais , Cálcio/metabolismo , Linhagem Celular , Retículo Endoplasmático/metabolismo , Deleção de Genes , Camundongos , Camundongos Knockout , Modelos Biológicos , Contração Muscular/genética , Força Muscular/genética , Oxirredução , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 315(2): R380-R396, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668323

RESUMO

Selenoprotein S (Seps1) is an endoplasmic reticulum (ER) resident antioxidant implicated in ER stress and inflammation. In human vastus lateralis and mouse hindlimb muscles, Seps1 localization and expression were fiber-type specific. In male Seps1+/- heterozygous mice, spontaneous physical activity was reduced compared with wild-type littermates ( d = 1.10, P = 0.029). A similar trend was also observed in Seps1-/- knockout mice ( d = 1.12, P = 0.051). Whole body metabolism, body composition, extensor digitorum longus (EDL), and soleus mass and myofiber diameter were unaffected by genotype. However, in isolated fast EDL muscles from Seps1-/- knockout mice, the force frequency curve (FFC; 1-120 Hz) was shifted downward versus EDL muscles from wild-type littermates ( d = 0.55, P = 0.002), suggestive of reduced strength. During 4 min of intermittent, submaximal (60 Hz) stimulation, the genetic deletion or reduction of Seps1 decreased EDL force production ( d = 0.52, P < 0.001). Furthermore, at the start of the intermittent stimulation protocol, when compared with the 60-Hz stimulation of the FFC, EDL muscles from Seps1-/- knockout or Seps1+/- heterozygous mice produced 10% less force than those from wild-type littermates ( d = 0.31, P < 0.001 and d = 0.39, P = 0.015). This functional impairment was associated with reduced mRNA transcript abundance of thioredoxin-1 ( Trx1), thioredoxin interacting protein ( Txnip), and the ER stress markers Chop and Grp94, whereas, in slow soleus muscles, Seps1 deletion did not compromise contractile function and Trx1 ( d = 1.38, P = 0.012) and Txnip ( d = 1.27, P = 0.025) gene expression was increased. Seps1 is a novel regulator of contractile function and cellular stress responses in fast-twitch muscles.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas de Membrana/deficiência , Contração Muscular , Fibras Musculares de Contração Rápida/enzimologia , Força Muscular , Selenoproteínas/deficiência , Adulto , Animais , Composição Corporal , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estimulação Elétrica , Estresse do Retículo Endoplasmático , Membro Posterior , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Fibras Musculares de Contração Lenta/enzimologia , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Adulto Jovem
12.
Sci Rep ; 8(1): 4764, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29555962

RESUMO

Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important quality control mechanism that eliminates misfolded proteins from the ER. The Derlin-1/VCP/VIMP protein complex plays an essential role in ERAD. Although the roles of Derlin-1 and VCP are relatively clear, the functional activity of VIMP in ERAD remains to be understood. Here we investigate the role of VIMP in the degradation of CFTRΔF508, a cystic fibrosis transmembrane conductance regulator (CFTR) mutant known to be a substrate of ERAD. Overexpression of VIMP markedly enhances the degradation of CFTRΔF508, whereas knockdown of VIMP increases its half-life. We demonstrate that VIMP is associated with CFTRΔF508 and the RNF5 E3 ubiquitin ligase (also known as RMA1). Thus, VIMP not only forms a complex with Derlin-1 and VCP, but may also participate in recruiting substrates and E3 ubiquitin ligases. We further show that blocking CFTRΔF508 degradation by knockdown of VIMP substantially augments the effect of VX809, a drug that allows a fraction of CFTRΔF508 to fold properly and mobilize from ER to cell surface for normal functioning. This study provides insight into the role of VIMP in ERAD and presents a potential target for the treatment of cystic fibrosis patients carrying the CFTRΔF508 mutation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Degradação Associada com o Retículo Endoplasmático/genética , Proteínas de Membrana/metabolismo , Selenoproteínas/metabolismo , Deleção de Sequência , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Selenoproteínas/deficiência , Selenoproteínas/genética
13.
J Clin Sleep Med ; 13(9): 1105-1108, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28558865

RESUMO

ABSTRACT: Selenoprotein-related myopathy (SEPN1-RM) is a rare disease with a variable clinical presentation. The selenoprotein N1 gene (SEPN1) mutation causing this congenital muscular dystrophy was identified in 2001. Sleep-disordered breathing (SDB) may occur in young patients with SEPN1-RM who are still able to walk. We report the cases of two children with SEPN1-RM who presented with SDB at the ages of 7 and 12 years and for whom long-term nocturnal noninvasive ventilation yielded significant improvement. Based on literature review and our current cases, it seems that there is no obvious relationship between the time since SDB onset and outcome of pulmonary function tests or limb muscle weakness. We therefore suggest that SDB should be systematically screened for in patients with SEPN1-RM, at regular intervals using nocturnal polysomnography.


Assuntos
Proteínas Musculares/genética , Doenças Musculares/complicações , Ventilação não Invasiva/métodos , Selenoproteínas/deficiência , Síndromes da Apneia do Sono/etiologia , Síndromes da Apneia do Sono/terapia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Doenças Musculares/genética , Mutação/genética , Polissonografia/estatística & dados numéricos , Selenoproteínas/genética
14.
Cell Biol Int ; 40(10): 1033-40, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27425444

RESUMO

Selenoprotein O (Sel O) is a selenium-containing protein, but its function is still unclear. In the present study, we observed that the mRNA and protein expression levels of Sel O increased during chondrogenic induction of ATDC5 cells. The effects of Sel O on chondrocyte differentiation were then examined through shRNA-mediated gene silencing technique. The expression of Sel O was significantly suppressed at both mRNA and protein levels in a stable cell line transfected with a Sel O-specific target shRNA construct. Thereafter, we demonstrated that Sel O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Sel O deficiencies inhibited expression of chondrogenic gene Sox9, Col II, and aggrecan. Sel O-deficient cells also accumulated a few cartilage glycosaminoglycans (GAGs) and decreased the activity of alkaline phosphatase (ALP). In addition, Sel O deficiencies inhibited chondrocyte proliferation through delayed cell cycle progression by suppression of cyclin D1 expression. Moreover, Sel O deficiencies induced chondrocyte death through cell apoptosis. In summary, we describe the expression patterns and the essential roles of Sel O in chondrocyte viability, proliferation, and chondrogenic differentiation. Additionally, Sel O deficiency-mediated impaired chondrogenesis may illustrate the mechanisms of Se deficiency in the pathophysiological process of the endemic osteoarthropathy.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Selenoproteínas/deficiência , Apoptose/fisiologia , Cartilagem/citologia , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Células Cultivadas , Condrogênese , Glicosaminoglicanos/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
15.
Mol Biochem Parasitol ; 206(1-2): 13-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26975431

RESUMO

The trace element selenium is found in polypeptides as selenocysteine, the 21(st) amino acid that is co-translationally inserted into proteins at a UGA codon. In proteins, selenocysteine usually plays a role as an efficient redox catalyst. Trypanosomatids previously examined harbor a full set of genes encoding the machinery needed for selenocysteine biosynthesis and incorporation into three selenoproteins: SelK, SelT and, the parasite-specific, Seltryp. We investigated the selenoproteome of kinetoplastid species in recently sequenced genomes and assessed the in vivo relevance of selenoproteins for African trypanosomes. Database mining revealed that SelK, SelT and Seltryp genes are present in most kinetoplastids, including the free-living species Bodo saltans, and Seltryp was lost in the subgenus Viannia from the New World Leishmania. Homology and sinteny with bacterial sulfur dioxygenases and sulfur transferases suggest a putative role for Seltryp in sulfur metabolism. A Trypanosoma brucei selenocysteine synthase (SepSecS) null-mutant, in which selenoprotein synthesis is abolished, displayed similar sensitivity to oxidative stress induced by a short-term exposure to high concentrations of methylglyoxal or H2O2 to that of the parental wild-type cell line. Importantly, the infectivity of the SepSecS knockout cell line was not impaired when tested in a mouse infection model and compensatory effects via up-regulation of proteins involved in thiol-redox metabolism were not observed. Collectively, our data show that selenoproteins are not required for survival of African trypanosomes in a mammalian host and exclude a role for selenoproteins in parasite antioxidant defense and/or virulence. On this basis, selenoproteins can be disregarded as drug target candidates.


Assuntos
Kinetoplastida/metabolismo , Proteínas de Protozoários/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Transferases/genética , Trypanosoma brucei brucei/metabolismo , Animais , Mineração de Dados , Bases de Dados Genéticas , Deleção de Genes , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Peróxido de Hidrogênio/farmacologia , Kinetoplastida/classificação , Kinetoplastida/efeitos dos fármacos , Kinetoplastida/crescimento & desenvolvimento , Camundongos , Filogenia , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Aldeído Pirúvico/farmacologia , Selenoproteínas/deficiência , Transferases/deficiência , Trypanosoma brucei brucei/classificação , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/crescimento & desenvolvimento , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/patologia
16.
J Clin Invest ; 126(3): 992-6, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26854926

RESUMO

Selenium is a trace element that is essential for human health and is incorporated into more than 25 human selenocysteine-containing (Sec-containing) proteins via unique Sec-insertion machinery that includes a specific, nuclear genome-encoded, transfer RNA (tRNA[Ser]Sec). Here, we have identified a human tRNA[Ser]Sec mutation in a proband who presented with a variety of symptoms, including abdominal pain, fatigue, muscle weakness, and low plasma levels of selenium. This mutation resulted in a marked reduction in expression of stress-related, but not housekeeping, selenoproteins. Evaluation of primary cells from the homozygous proband and a heterozygous parent indicated that the observed deficit in stress-related selenoprotein production is likely mediated by reduced expression and diminished 2'-O-methylribosylation at uridine 34 in mutant tRNA[Ser]Sec. Moreover, this methylribosylation defect was restored by cellular complementation with normal tRNA[Ser]Sec. This study identifies a tRNA mutation that selectively impairs synthesis of stress-related selenoproteins and demonstrates the importance of tRNA modification for normal selenoprotein synthesis.


Assuntos
Doenças Genéticas Inatas/diagnóstico , RNA de Transferência Aminoácido-Específico/genética , Selenoproteínas/genética , Sequência de Bases , Criança , Análise Mutacional de DNA , Estudos de Associação Genética , Doenças Genéticas Inatas/genética , Humanos , Masculino , Dados de Sequência Molecular , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Biossíntese de Proteínas , Selenoproteínas/sangue , Selenoproteínas/deficiência
17.
Antioxid Redox Signal ; 24(11): 557-74, 2016 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26866473

RESUMO

AIMS: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. RESULTS: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. INNOVATION: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. CONCLUSIONS: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Oxirredutases/metabolismo , Doença de Parkinson/metabolismo , Selenoproteínas/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurotoxinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/patologia , Selenoproteínas/deficiência
18.
Eur J Paediatr Neurol ; 20(3): 483-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26805434

RESUMO

BACKGROUND: The term Pontocerebellar hypoplasias collectively refers to a group of rare, heterogeneous and progressive disorders, which are frequently inherited in an autosomal recessive manner and usually have a prenatal onset. Mutations in the SEPSECS gene, leading to deficiency in selenoprotein biosynthesis, have been identified in recent times as the molecular etiology of different pre/perinatal onset neurological phenotypes, including cerebello-cerebral atrophy, Pontocerebellar hypoplasia type 2D and progressive encephalopathy with elevated lactate. These disorders share a similar spectrum of central (e.g., brain neurodegeneration with grey and white matter both involved) and peripheral (e.g., spasticity due to axonal neuropathy) nervous system impairment. CASE PRESENTATION: We hereby describe a 9-year-old boy with (i) a typical Pontocerebellar hypoplasia type 2D phenotype (e.g. profound mental retardation, spastic quadriplegia, ponto-cerebellar hypoplasia and progressive cerebral atrophy); (ii) optic nerve atrophy and (iii) mild secondary mitochondrial myopathy detected by muscle biopsy and respiratory chain enzyme analysis. We performed whole exome sequencing which identified a homozygous mutation of the SEPSECS gene (c.1001T > C), confirming the clinical suspect of Pontocerebellar hypoplasia type 2D. CONCLUSION: This report further corroborates the notion of a potential secondary mitochondrial dysfunction in the context of selenoprotein biosynthesis deficiency and also adds optic nerve atrophy as a new potential clinical feature within the SEPSECS-associated clinical spectrum. These findings suggest the presence of a possible shared genetic etiology among similar clinical entities characterized by the combination of progressive cerebello-cerebral and optic nerve atrophy and also stress the biological importance of selenoproteins in the regulation of neuronal and metabolic homeostasis.


Assuntos
Aminoacil-tRNA Sintetases/genética , Doenças Cerebelares/diagnóstico , Mutação/genética , Nervo Óptico/patologia , Selenoproteínas/deficiência , Atrofia , Doenças Cerebelares/complicações , Doenças Cerebelares/genética , Criança , Humanos , Deficiência Intelectual/etiologia , Masculino , Fenótipo
19.
Mol Neurobiol ; 53(9): 5818-5832, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26497036

RESUMO

Selenoprotein T (SelT) is a newly discovered thioredoxin-like protein, which is abundantly but transiently expressed in the neural lineage during brain ontogenesis. Because its physiological function in the brain remains unknown, we developed a conditional knockout mouse line (Nes-Cre/SelTfl/fl) in which SelT gene is specifically disrupted in nerve cells. At postnatal day 7 (P7), these mice exhibited reduced volume of different brain structures, including hippocampus, cerebellum, and cerebral cortex. This phenotype, which is observed early during the first postnatal week, culminated at P7 and was associated with increased loss of immature neurons but not glial cells, through apoptotic cell death. This phenomenon was accompanied by elevated levels of intracellular reactive oxygen species, which may explain the increased neuron demise and reduced brain structure volumes. At the second postnatal week, an increase in neurogenesis was observed in the cerebellum of Nes-Cre/SelTfl/fl mice, suggesting the occurrence of developmental compensatory mechanisms in the brain. In fact, the brain volume alterations observed at P7 were attenuated in adult mice. Nevertheless, SelT mutant mice exhibited a hyperactive behavior, suggesting that despite an apparent morphological compensation, SelT deficiency leads to cerebral malfunction in adulthood. Altogether, these results demonstrate that SelT exerts a neuroprotective role which is essential during brain development, and that its loss impairs mice behavior.


Assuntos
Comportamento Animal , Hipercinese/metabolismo , Malformações do Sistema Nervoso/metabolismo , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Selenoproteínas/deficiência , Animais , Animais Recém-Nascidos , Apoptose , Astrócitos/metabolismo , Encéfalo/patologia , Proliferação de Células , Sobrevivência Celular , Homeostase , Hipercinese/patologia , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Nervoso/patologia , Malformações do Sistema Nervoso/patologia , Nestina/metabolismo , Neurogênese , Neurônios/metabolismo , Neurônios/patologia , Tamanho do Órgão , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/genética
20.
Neurology ; 85(4): 306-15, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26115735

RESUMO

OBJECTIVE: We aimed to decipher the molecular genetic basis of disease in a cohort of children with a uniform clinical presentation of neonatal irritability, spastic or dystonic quadriplegia, virtually absent psychomotor development, axonal neuropathy, and elevated blood/CSF lactate. METHODS: We performed whole-exome sequencing of blood DNA from the index patients. Detected compound heterozygous mutations were confirmed by Sanger sequencing. Structural predictions and a bacterial activity assay were performed to evaluate the functional consequences of the mutations. Mass spectrometry, Western blotting, and protein oxidation detection were used to analyze the effects of selenoprotein deficiency. RESULTS: Neuropathology indicated laminar necrosis and severe loss of myelin, with neuron loss and astrogliosis. In 3 families, we identified a missense (p.Thr325Ser) and a nonsense (p.Tyr429*) mutation in SEPSECS, encoding the O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase, which was previously associated with progressive cerebellocerebral atrophy. We show that the mutations do not completely abolish the activity of SEPSECS, but lead to decreased selenoprotein levels, with demonstrated increase in oxidative protein damage in the patient brain. CONCLUSIONS: These results extend the phenotypes caused by defective selenocysteine biosynthesis, and suggest SEPSECS as a candidate gene for progressive encephalopathies with lactate elevation.


Assuntos
Aminoacil-tRNA Sintetases/genética , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/metabolismo , Ácido Láctico/sangue , Ácido Láctico/líquido cefalorraquidiano , Selenoproteínas/deficiência , Adolescente , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias Metabólicas Congênitas/sangue , Encefalopatias Metabólicas Congênitas/líquido cefalorraquidiano , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação , Estresse Oxidativo/genética , Selenoproteínas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...